Introduction to Computing and Programming

in Python:
A Multimedia Approach

Loops

Chapter Objectives

The media learning goals for this chapter are:
+ To understand how we digitize sounds, and the limitations of human hearing that
allow us to digitize sounds.

« To use the Nyquist theorem to determine the sampling rate necessary for
digitizing a desired sound.

+ To manipulate volume.
+ To create (and avoid) clipping.

The computer science goals for this chapter are:

» To understand and use arrays as a data structure.

» To use the formula that n bits result in 2™ possible patterns in order to figure out
the number of bits needed to save values.

+ To use the sound object.

+ To debug sound programs.

« To use iteration (in for loops) for manipulating sounds.

+ To use scope to understand when a variable is available for us.

" How sound works:
Acoustics, the physics of sound

Sounds are waves of air
pressure

* Sound comes in cycles
* The frequency of a wave is
the number of cycles per
second (cps), or Hertz
* Complex sounds have
more than one
frequency in them.

* The amplitude is the
maximum height of the wave

LAmplitude
(Difference
from zero to
top of eyele)

|

i N

N\

N /

NS

One cyele

e

Volume and Pitch:

g
———

Psychoacoustics, the psychology of sound

Our perception of volume is related (logarithmically)
to changes in amplitude

* If the amplitude doubles, it’s about a 3 decibel (dB)
change

Our perception of pitch is related (logarithmically) to
changes in frequency

* Higher frequencies are perceived as higher pitches

®* We can hear between 5 Hz and 20,000 Hz (20 kHz)

* A above middle C is 440 Hz

“Logarithmically?”

It's strange, but our hearing works on ratios not
differences, e.g., for pitch.

®* We hear the difference between 200 Hz and 400 Hz, as
the same as 500 Hz and 1000 Hz

* Similarly, 200 Hz to 600 Hz, and 1000 Hz to 3000 Hz

Intensity (volume) is measured as watts per meter
squared

* A change from 0.1W/mz2 to 0.01 W/mz2, sounds the same
to us as 0.000W/m2 to 0.0001W/m2

Decibel is a logarithmic measure

A decibel is a ratio between two intensities:
19 = Jec @i /)

* As an absolute measure, it's in comparison to threshold

of audibility
®* 0 dB can’t be heard.

* Normal speech is 60 dB.
* A shout is about 8o dB

monstrating Sound MediaTools

De

‘Record Viewer ;:F_E-::nr-:j"_i

Stop| Play |

Click hereto see
viewerswhile
recording

Fourier transform
(FFT)

Sig?q 7:11"1.1:& Sonogram Magnifier
1]

'/

Signal Spectrum Sonozram Magnifier

. Somogram Magnifier

" Digitizing Sound: How do we get
that into numbers?

Remember in calculus,
estimating the curve by
creating rectangles?

We can do the same to

estimate the sound curve

* Analog-to-digital
conversion (ADC) will give
us the amplitude at an
instant as a number: a
sample

* How many samples do we
need?

Nyquist Theorem

We need twice as many samples as the maximum

frequency in order to represent (and recreate, later)
the original sound.

The number of samples recorded per second is the

sampling rate

* If we capture 8ooo samples per second, the highest
frequency we can capture is 4000 Hz

* That’s how phones work

* If we capture more than 44,000 samples per second, we
capture everything that we can hear (max 22,000 Hz)

* CD quality is 44,100 samples per second

Digitizing sound in the computer

Each sample is stored as a number (two bytes)

What’s the range of available combinations?

® 16 bits, 216 = 65,536

* But we want both positive and negative values
* To indicate compressions and rarefactions.

° What if we use one bit to indicate positive (0) or negative
(1)?

* That leaves us with 15 bits

® 15 bits, 215 = 32,768

® One of those combinations will stand for zero

* We'll use a “positive” one, so that’s one less pattern for positives

Two’s Complement Numbers

011
010
001

000
111
110
101
100

Imagine there are only 3 bits

we get 23 = 8 possible values

Subtracting 1 from 2 we borrow 1

Subtracting 1 from o we borrow 1’s
which turns on the high bit for all
negative numbers

“Two’s complement numbers can
be simply added

1111111
Adding -9 (11110111) DO []01 001

and 9 (00001001) —|—1 1 1 1 []1 _11
00000000

+/- 32K

Each sample can be between -32,768 and 32,767

Why such a bizarre number?

Because 32,768 + 32,767 + 1 = 216

//'/\

I.e. 16 bits, or 2 bytes

Comparethisto0...255 for light intensity

(i.e. 8 bitsor 1 byte)

Sounds as arrays

Samples are just stored one right after the other in the

computer’'s memory
(Like pixelsin a picture)

That’s called an array

° It’s an especially efficient (quickly accessed) memory
structure

Working with sounds

We'll use pickAFile and makeSound.

* We want .wav files

We'll use getSamples to get all the sample objects out

of a sound

We can also get the value at any index with
getSampleValueAt

Sounds also know their length (getLength) and their
sampling rate (getSamplingRate)

Can save sounds with writeSoundTo(sound,
"file.wav")

g

Demonstrating Working with Sound
in JES

>>> filename=pickAFil&()

>>> print filename
/Users/guzdial/mediasources/preamble.wav
>>> spund=makeSound(filename)

>>> print sound

Sound of length 421109

>>> sampl es=getSampl es(sound)

>>> print samples

Samples, length 421109

>>> print getSampleValueAt(sound,1)

36

>>> print getSampleValueAt(sound,2)

29

>>> explore(sound)

_ Demonstrating working with—""
samples

>>> print getL ength(sound)

220568

>>> print getSamplingRate(sound)

22050.0

>>> print getSampleV alueAt(sound,220568)
68

>>> print getSampleV alueAt(sound,220570)

| wasn't able to do what you wanted.

The error javalang.Arrayl ndexOutOf BoundsException has occurred
Please check line O of

>>> print getSampleValueAt(sound,1)
36

>>> setSampleVaueAt(sound,1,12)
>>> print getSampleValueAt(sound,1)
12

Working with Samples

We can get sample objects out of a sound with
getSamples(sound) or
getSampleObjectAt(sound,index)

A sample object remembers its sound, so if you
change the sample object, the sound gets changed.

Sample objects understand getSample(sample) and
setSample(sample,value)

Example: Changing Samples “

>>> soundfile=pick AFile()

>>> spund=makeSound(soundfile)
>>> sampl e=getSampl eObj ectAt(sound, 1)
>>> print sample

Sample at 1 value at 59

>>> print sound

Sound of length 387573

>>> print getSound(sample)
Sound of length 387573

>>> print getSample(sample)

59

>>> setSampl e(sampl e,29)

>>> print getSample(sample)

29

E R s . e ;
- "But there are thousands of these

samples

How do we do something to these samples to
manipulate them, when there are thousands of them

per second?

We use a loop and get the computer to iterate in
order to do something to each sample.

III

An example loop:

for samplein getSamples(sound):
value = getSample(sample)
setSample(sample,value)

Recipe to Increase the Volume

def 1 ncreaseVol une(sound):
for sanple i n getSanpl es(sound):
val ue = get Sanpl eVal ue(sanpl e)
set Sampl eVval ue(sanpl e, val ue * 2)

“How did that work?

When we evaluate >>> f =pi ckAFi | e()
increaseVolume(s), the >>> s=makeSound(f)
function increaseVolume >>> j ncreaseVol une(s)
is executed

The sound in variable s
becomes known as sound

Sound is a placeholder for
the sound object s.

def 1 ncreaseVol une(sound):
for sanple in get Sanpl es(sound):
val ue = get Sanpl eVal ue(sanpl e)
set Sanpl eval ue(sanpl e, val ue * 2)

Starting the loop

getSamples(sound) def 1ncr easeV_oI ume(sound) :
returns a sequence of all for sanple in getSanples(sound):

the sample objects in the val ue = get Sanpl eVal ue(sanpl e)
sound. set Sanpl eVal ue(sanpl e, val ue * 2)

The for loop makes
sample be the first
sample as the block is
started. for pixel in

get Pi xel s(picture):

Compare:

getSamples
(sound)

/4

,__—/f/)

/I/-fxecuting the block

" We get the value of :
the sample named def 1 ncreaseVol une(sound):

sample. for sanple in get Sanpl es(sound):
We set the value of val ue = get Sanpl eVal ue(sanpl e)
the sample to be the set Sanpl eVal ue(sanpl e, val ue * 2)
current value (variable

value) times 2

getSamples
(sound)

" Next sample

def 1 ncreaseVol unme(sound):
for sanple in
get Sanpl es(sound) :
val ue =
get Sanpl eVal ue(sanpl e)
set Sanpl eVal ue(sanpl e, val ue
*2)

® Back to the top of the loop,
and sample will now be the
second sample in the
sequence.

getSamples
(sound)

e

b

And increase that next sample

" We set the value of def increaseVol unme(sound):
this sample to be ?he for sanple in get Sanpl es(sound):
current yalue (variable val ue = get Sanpl eVal ue(sanpl e)
value) times 2. set Sanpl eVal ue(sanpl e, val ue * 2)

getSamples
(sound)

/4

/Kﬁon through the sequence

® The loop keeps repeating
until a/l the samples are
doubled

def 1 ncreaseVol une(sound):
for sanple in
get Sanpl es(sound):
val ue =
get Sanpl eVal ue(sanpl e)
set Sanpl eVal ue(sanpl e, val ue

* 2)

getSamples
(sound)

How are we sure that
that worked?

>>> print s

Sound of length 220567

>>> print f
/Users/guzdial/mediasources/gettysburg10.wav
>>> soriginal=makeSound(f)

>>> print getSampleValueAt(s,1)

118

>>> print getSampleV alueAt(soriginal,1)

59

>>> print getSampleValueAt(s,2)

78

>>> print getSampleV alueAt(soriginal ,2)

39

>>> print getSampleV alueAt(s,1000)

-80

>>> print getSampleValueAt(soriginal,1000)
-40

Herewe're
comparing the

modified sound s
to a copy of the
original sound
soriginal

Exploring both sounds

Sl ® Clip-book/mediasources/test. way -_-_j_’}

The right side does look like
It'slarger.

" Decreasing the volume

def decreaseVol une(sound):
for sanple in
get Sanpl es(sound) :
val ue =
get Sanpl eVal ue(sanpl e)
set Sanmpl eVal ue(sanpl e, val ue
* 0. 5) H

Thisworks just like
IncreaseVolume, but we're
lowering each sample by
50% instead of doubling it.

We can make this generic

By adding a parameter, we can create a general
changeVolume that can increase or decrease
volume.

def changeVol une(sound |,
factor):
for sanple iIn
get Sanpl es(sound) :
val ue =
get Sanpl eVal ue(sanpl e)
set Sanpl eVal ue(sampl e
,value * factor)

def 1 ncreaseVol ume(sound):
for sanple in
get Sanpl es(sound) :
val ue =
get Sanpl eVal ue(sanpl e)
set Sanpl eVval ue(sanpl e,
val ue* 2)

def decreaseVol une(sound):
for sanple in
get Sanpl es(sound):
val ue =
get Sanpl eVal ue(sanpl e)
set Sanpl eVal ue(sanpl e,
val ue*0. 5)

-

/

" Recognize some similarities?

def 1 ncreaseRed(picture):

for p in getPixels(picture):
val ue=get Red(p)

set Red(p, val ue*1. 2)

def decreaseRed(picture):

for p in getPixels(picture):
val ue=get Red(p)

set Red(p, val ue*0. 5)

/7

"Does increasing the volume change

the volume setting?
No

* The physical volume setting indicates an upper bound,
the potential loudest sound.

* Within that potential, sounds can be louder or softer
* They can fill that space, but might not.

(Have you ever noticed how commercials

are always louder than regular programs?)

LLouder content attracts your attention.
L1t maximizes the potential sound.

Maximizing volume

How, then, do we get maximal volume?

* (e.g. automatic recording level)

It's a three-step process:
* First, figure out the loudest sound (largest sample).

* Next, figure out how much we have to
increase/decrease that sound to fill the available space

* We want to find the amplification factor amp, where amp *
loudest = 32767

* In other words: amp = 32767/loudest
* Finally, amplify each sample by multiplying it by amp

- Maxing (normalizing) theﬁﬁﬁ |

def normali ze(sound):
| argest = 0
for s in getSanpl es(sound):
| argest = max(l argest, get Sanpl eVal ue(s))
amplification = 32767.0 / | argest

print "Largest sanple value in original sound
was", | argest

print "Amplification nultiplier is",
anplification

for s 1 n getSanpl es(sound):
| ouder = anplification * get Sanpl eVal ue(s)
set Sanpl eval ue(s, | ouder)

Max()

max() is a function that >>> print max(1,2,3)
takes any number of 3
inputs, and always >>> print max(4,67,98,-1,2)

returns the largest. 98

There is also a function
min() which works
similarly but returns the
minimum

Or: use if instead of max

def normali ze(sound):
| argest = 0
for s in getSanpl es(sound):
| f get Sanpl eVal ue(s) > | argest:
| ar gest = get Sanpl eVal ue(s)

amplification = 32767.0 / |argest
print "Largest sanple value in original sound was",
| ar gest
print "Anplification factor is", anplification
for s in getSanpl es(sound):
| ouder = anplification * get Sanpl eVal ue(s)
set Sanpl evVal ue(s, | ouder)

,./ ’

/i =

- Aside: positive and negative
extremes assumed to be equal

We're making an assumption here that the maximum
positive value is also the maximum negative value.

* That should be true for the sounds we deal with, but
isn’t necessarily true

Try adding a constant to every sample.

* That makes it non-cyclic

* l.e. the compressions and rarefactions in the sound wave are
not equal

° But it’s fairly subtle what’s happening to the sound.

Why 32767.0, not 327677

Why do we divide out of >>> print 1.0/2

32767.0 and not just 05
simply 327677 >>> print 1.0/2.0

0.5
* Because of the way |
Python handles (>)>> print 1/2
numbers

* If you give it integers, it
will only ever compute
integers.

Avoiding clipping

Why are we being so careful to stay within range?
What if we just multiplied all the samples by some big
number and let some of them go over 32,7677

The result then is clipping

* Clipping: The awful, buzzing noise whenever the sound
volume is beyond the maximum that your sound
system can handle.

AII cllppmg, aII the time

def onl yMaxi m ze(sound):
for sanple i n getSanpl es(sound):
val ue = get Sanpl eVal ue(sanpl e)
| f value > O:

set Sanpl eVal ue(sanpl e,
32767)

| f val ue < O:;:

set Sanpl eVal ue(sanpl e,
- 32768)

m mndla.nur:n\tﬁt .Fh'

Processing only part of the sound

What if we wanted to increase or decrease the volume
of only part of the sound?

Q: How would we do it?

A: We'd have to use a range() function with our for
loop

® Just like when we manipulated only part of a picture by
using range() in conjunction with getPixels()

	Introduction to Computing and Programming in Python: A Multimedia Approach
	Chapter Objectives
	How sound works: Acoustics, the physics of sound
	Volume and Pitch: Psychoacoustics, the psychology of sound
	“Logarithmically?”
	Decibel is a logarithmic measure
	Demonstrating Sound MediaTools
	Digitizing Sound: How do we get that into numbers?
	Nyquist Theorem
	Digitizing sound in the computer
	Two’s Complement Numbers
	Two’s complement numbers can be simply added
	+/- 32K
	Sounds as arrays
	Working with sounds
	Demonstrating Working with Sound in JES
	Demonstrating working with samples
	Working with Samples
	Example: Changing Samples
	“But there are thousands of these samples!”
	Recipe to Increase the Volume
	How did that work?
	Starting the loop
	Executing the block
	Next sample
	And increase that next sample
	And on through the sequence
	How are we sure that that worked?
	Exploring both sounds
	Decreasing the volume
	We can make this generic
	Recognize some similarities?
	Does increasing the volume change the volume setting?
	Maximizing volume
	Maxing (normalizing) the sound
	Max()
	Or: use if instead of max
	Aside: positive and negative extremes assumed to be equal
	Why 32767.0, not 32767?
	Avoiding clipping
	All clipping, all the time
	Processing only part of the sound

