
Chapter 6: Modifying Sounds Using Loops

How sound works:
Acoustics, the physics of sound
 Sounds are waves of air

pressure
 Sound comes in cycles
 The frequency of a wave is

the number of cycles per
second (cps), or Hertz
 Complex sounds have

more than one
frequency in them.

 The amplitude is the
maximum height of the wave

Volume and Pitch:
Psychoacoustics, the psychology of sound
 Our perception of volume is related (logarithmically)

to changes in amplitude
 If the amplitude doubles, it’s about a 3 decibel (dB)

change
 Our perception of pitch is related (logarithmically) to

changes in frequency
 Higher frequencies are perceived as higher pitches
 We can hear between 5 Hz and 20,000 Hz (20 kHz)
 A above middle C is 440 Hz

“Logarithmically?”
 It’s strange, but our hearing works on ratios not

differences, e.g., for pitch.
 We hear the difference between 200 Hz and 400 Hz, as

the same as 500 Hz and 1000 Hz
 Similarly, 200 Hz to 600 Hz, and 1000 Hz to 3000 Hz

 Intensity (volume) is measured as watts per meter
squared
 A change from 0.1W/m2 to 0.01 W/m2, sounds the same

to us as 0.001W/m2 to 0.0001W/m2

Decibel is a logarithmic measure
 A decibel is a ratio between two intensities:
10 * log10(I1/I2)
 As an absolute measure, it’s in comparison to threshold

of audibility
 0 dB can’t be heard.
 Normal speech is 60 dB.
 A shout is about 80 dB

Fourier transform
(FFT)

Click here to see
viewers while
recording

Digitizing Sound: How do we get
that into numbers?
 Remember in calculus,

estimating the curve by
creating rectangles?

 We can do the same to
estimate the sound curve
 Analog-to-digital

conversion (ADC) will give
us the amplitude at an
instant as a number: a
sample

 How many samples do we
need?

Nyquist Theorem
 We need twice as many samples as the maximum

frequency in order to represent (and recreate, later)
the original sound.

 The number of samples recorded per second is the
sampling rate
 If we capture 8000 samples per second, the highest

frequency we can capture is 4000 Hz
 That’s how phones work

 If we capture more than 44,000 samples per second, we
capture everything that we can hear (max 22,000 Hz)
 CD quality is 44,100 samples per second

Digitizing sound in the computer
 Each sample is stored as a number (two bytes)
 What’s the range of available combinations?

 16 bits, 216 = 65,536
 But we want both positive and negative values

 To indicate compressions and rarefactions.
 What if we use one bit to indicate positive (0) or negative

(1)?
 That leaves us with 15 bits
 15 bits, 215 = 32,768
 One of those combinations will stand for zero

 We’ll use a “positive” one, so that’s one less pattern for positives

Two’s Complement Numbers
 011 +3 Imagine there are only 3 bits
 010 +2 we get 23 = 8 possible values
 001 +1 Subtracting 1 from 2 we borrow 1

 000 0
 111 -1 Subtracting 1 from 0 we borrow 1’s
 110 -2 which turns on the high bit for all
 101 -3 negative numbers
 100 -4

Two’s complement numbers can
be simply added

Adding -9 (11110111)
and 9 (00001001)

+/- 32K
 Each sample can be between -32,768 and 32,767

Compare this to 0...255 for light intensity

(i.e. 8 bits or 1 byte)

Why such a bizarre number?

Because 32,768 + 32,767 + 1 = 216

i.e. 16 bits, or 2 bytes< 0 > 0 0

Sounds as arrays
 Samples are just stored one right after the other in the

computer’s memory

 That’s called an array
 It’s an especially efficient (quickly accessed) memory

structure

(Like pixels in a picture)

Working with sounds
 We’ll use pickAFile and makeSound.

 We want .wav files

 We’ll use getSamples to get all the sample objects out
of a sound

 We can also get the value at any index with
getSampleValueAt

 Sounds also know their length (getLength) and their
sampling rate (getSamplingRate)

 Can save sounds with writeSoundTo(sound,
"file.wav")

>>> filename=pickAFile()
>>> print filename
/Users/guzdial/mediasources/preamble.wav
>>> sound=makeSound(filename)
>>> print sound
Sound of length 421109
>>> samples=getSamples(sound)
>>> print samples
Samples, length 421109
>>> print getSampleValueAt(sound,1)
36
>>> print getSampleValueAt(sound,2)
29
>>> explore(sound)

>>> print getLength(sound)
220568
>>> print getSamplingRate(sound)
22050.0
>>> print getSampleValueAt(sound,220568)
68
>>> print getSampleValueAt(sound,220570)
I wasn't able to do what you wanted.
The error java.lang.ArrayIndexOutOfBoundsException has occurred
Please check line 0 of
>>> print getSampleValueAt(sound,1)
36
>>> setSampleValueAt(sound,1,12)
>>> print getSampleValueAt(sound,1)
12

Working with Samples
 We can get sample objects out of a sound with

getSamples(sound) or
getSampleObjectAt(sound,index)

 A sample object remembers its sound, so if you
change the sample object, the sound gets changed.

 Sample objects understand getSample(sample) and
setSample(sample,value)

>>> soundfile=pickAFile()
>>> sound=makeSound(soundfile)
>>> sample=getSampleObjectAt(sound,1)
>>> print sample
Sample at 1 value at 59
>>> print sound
Sound of length 387573
>>> print getSound(sample)
Sound of length 387573
>>> print getSample(sample)
59
>>> setSample(sample,29)
>>> print getSample(sample)
29

“But there are thousands of these
samples!”
 How do we do something to these samples to

manipulate them, when there are thousands of them
per second?

 We use a loop and get the computer to iterate in
order to do something to each sample.

 An example loop:

for sample in getSamples(sound):
 value = getSample(sample)
 setSample(sample,value)

def increaseVolume(sound):
 for sample in getSamples(sound):
 value = getSampleValue(sample)
 setSampleValue(sample,value * 2)

How did that work?
 When we evaluate

increaseVolume(s), the
function increaseVolume
is executed

 The sound in variable s
becomes known as sound

 Sound is a placeholder for
the sound object s.

def increaseVolume(sound):
 for sample in getSamples(sound):
 value = getSampleValue(sample)
 setSampleValue(sample,value * 2)

>>> f=pickAFile()
>>> s=makeSound(f)
>>> increaseVolume(s)

Starting the loop
 getSamples(sound)

returns a sequence of all
the sample objects in the
sound.

 The for loop makes
sample be the first
sample as the block is
started.

def increaseVolume(sound):
 for sample in getSamples(sound):
 value = getSampleValue(sample)
 setSampleValue(sample,value * 2)

Compare:

for pixel in
getPixels(picture):

Executing the block
 We get the value of

the sample named
sample.

 We set the value of
the sample to be the
current value (variable
value) times 2

def increaseVolume(sound):
 for sample in getSamples(sound):
 value = getSampleValue(sample)
 setSampleValue(sample,value * 2)

Next sample
 Back to the top of the loop,

and sample will now be the
second sample in the
sequence.

def increaseVolume(sound):
 for sample in
getSamples(sound):
 value =
getSampleValue(sample)
 setSampleValue(sample,value
* 2)

And increase that next sample
 We set the value of
this sample to be the
current value (variable
value) times 2.

def increaseVolume(sound):
 for sample in getSamples(sound):
 value = getSampleValue(sample)
 setSampleValue(sample,value * 2)

And on through the sequence
 The loop keeps repeating

until all the samples are
doubled

def increaseVolume(sound):
 for sample in
getSamples(sound):
 value =
getSampleValue(sample)
 setSampleValue(sample,value
* 2)

>>> print s
Sound of length 220567
>>> print f
/Users/guzdial/mediasources/gettysburg10.wav
>>> soriginal=makeSound(f)
>>> print getSampleValueAt(s,1)
118
>>> print getSampleValueAt(soriginal,1)
59
>>> print getSampleValueAt(s,2)
78
>>> print getSampleValueAt(soriginal,2)
39
>>> print getSampleValueAt(s,1000)
-80
>>> print getSampleValueAt(soriginal,1000)
-40

Here we’re
comparing the
modified sound s
to a copy of the
original sound
soriginal

The right side does look like
it’s larger.

def decreaseVolume(sound):
 for sample in
getSamples(sound):
 value =
getSampleValue(sample)
 setSampleValue(sample,value
* 0.5)

This works just like
increaseVolume, but we’re
lowering each sample by
50% instead of doubling it.

We can make this generic
 By adding a parameter, we can create a general

changeVolume that can increase or decrease
volume.

def changeVolume(sound ,
factor):
 for sample in
getSamples(sound):
 value =
getSampleValue(sample)
 setSampleValue(sample
,value * factor)

def decreaseVolume(sound):
 for sample in
getSamples(sound):
 value =
getSampleValue(sample)
 setSampleValue(sample,
value*0.5)

def increaseVolume(sound):
 for sample in
getSamples(sound):
 value =
getSampleValue(sample)
 setSampleValue(sample,
value*2)

def decreaseRed(picture):
 for p in getPixels(picture):
 value=getRed(p)
 setRed(p,value*0.5)

def increaseRed(picture):
 for p in getPixels(picture):
 value=getRed(p)
 setRed(p,value*1.2)

Does increasing the volume change
the volume setting?
 No

 The physical volume setting indicates an upper bound,
the potential loudest sound.

 Within that potential, sounds can be louder or softer
 They can fill that space, but might not.

(Have you ever noticed how commercials
are always louder than regular programs?)

Louder content attracts your attention.
It maximizes the potential sound.

Maximizing volume
 How, then, do we get maximal volume?

 (e.g. automatic recording level)
 It’s a three-step process:

 First, figure out the loudest sound (largest sample).
 Next, figure out how much we have to

increase/decrease that sound to fill the available space
 We want to find the amplification factor amp, where amp *

loudest = 32767
 In other words: amp = 32767/loudest

 Finally, amplify each sample by multiplying it by amp

def normalize(sound):
 largest = 0
 for s in getSamples(sound):
 largest = max(largest, getSampleValue(s))
 amplification = 32767.0 / largest

 print "Largest sample value in original sound
was", largest
 print ”Amplification multiplier is",
amplification

 for s in getSamples(sound):
 louder = amplification * getSampleValue(s)
 setSampleValue(s, louder)

Max()
 max() is a function that

takes any number of
inputs, and always
returns the largest.

 There is also a function
min() which works
similarly but returns the
minimum

>>> print max(1,2,3)
3
>>> print max(4,67,98,-1,2)
98

Or: use if instead of max
def normalize(sound):
 largest = 0
 for s in getSamples(sound):
 if getSampleValue(s) > largest:
 largest = getSampleValue(s)
 amplification = 32767.0 / largest
 print "Largest sample value in original sound was",
 largest
 print ”Amplification factor is", amplification
 for s in getSamples(sound):
 louder = amplification * getSampleValue(s)
 setSampleValue(s, louder)

Aside: positive and negative
extremes assumed to be equal
 We’re making an assumption here that the maximum

positive value is also the maximum negative value.
 That should be true for the sounds we deal with, but

isn’t necessarily true
 Try adding a constant to every sample.

 That makes it non-cyclic
 I.e. the compressions and rarefactions in the sound wave are

not equal
 But it’s fairly subtle what’s happening to the sound.

Why 32767.0, not 32767?
 Why do we divide out of

32767.0 and not just
simply 32767?
 Because of the way

Python handles
numbers

 If you give it integers, it
will only ever compute
integers.

>>> print 1.0/2
0.5
>>> print 1.0/2.0
0.5
>>> print 1/2
0

Avoiding clipping
 Why are we being so careful to stay within range?

What if we just multiplied all the samples by some big
number and let some of them go over 32,767?

 The result then is clipping
 Clipping: The awful, buzzing noise whenever the sound

volume is beyond the maximum that your sound
system can handle.

All clipping, all the time
def onlyMaximize(sound):
 for sample in getSamples(sound):
 value = getSampleValue(sample)
 if value > 0:
 setSampleValue(sample,
32767)

 if value < 0:
 setSampleValue(sample,
-32768)

Processing only part of the sound
 What if we wanted to increase or decrease the volume

of only part of the sound?
 Q: How would we do it?
 A: We’d have to use a range() function with our for

loop
 Just like when we manipulated only part of a picture by

using range() in conjunction with getPixels()

	Introduction to Computing and Programming in Python: A Multimedia Approach
	Chapter Objectives
	How sound works: Acoustics, the physics of sound
	Volume and Pitch: Psychoacoustics, the psychology of sound
	“Logarithmically?”
	Decibel is a logarithmic measure
	Demonstrating Sound MediaTools
	Digitizing Sound: How do we get that into numbers?
	Nyquist Theorem
	Digitizing sound in the computer
	Two’s Complement Numbers
	Two’s complement numbers can be simply added
	+/- 32K
	Sounds as arrays
	Working with sounds
	Demonstrating Working with Sound in JES
	Demonstrating working with samples
	Working with Samples
	Example: Changing Samples
	“But there are thousands of these samples!”
	Recipe to Increase the Volume
	How did that work?
	Starting the loop
	Executing the block
	Next sample
	And increase that next sample
	And on through the sequence
	How are we sure that that worked?
	Exploring both sounds
	Decreasing the volume
	We can make this generic
	Recognize some similarities?
	Does increasing the volume change the volume setting?
	Maximizing volume
	Maxing (normalizing) the sound
	Max()
	Or: use if instead of max
	Aside: positive and negative extremes assumed to be equal
	Why 32767.0, not 32767?
	Avoiding clipping
	All clipping, all the time
	Processing only part of the sound

